APPENDIX TWO: Prehospital Stroke Screening Tools

Table 2A: Standardized Acute Pre-Hospital Stroke Screening Tools

<table>
<thead>
<tr>
<th>Assessment Tool</th>
<th>Items/Scoring</th>
<th>Sample</th>
<th>Reference Standard</th>
<th>Results (validity & reliability)</th>
</tr>
</thead>
</table>
| **Cincinnati Pre-Hospital Stroke Scale (CPSS)** | 3 items: presence/absence of facial palsy; unilateral arm weakness; and speech impairment. Items simplified versions from the NIHSS. Abnormality demonstrated on one or more items is indicative of suspected stroke. | 171 patients with suspected stroke recruited through ED and inpatient neurology units. Mean age was 57.8 years, 58% male. Stroke/TIA prevalence: 49 (28.7%) Patients were assessed by 24 prehospital care providers (17 paramedics and 7 EMTs) and 2 NIH certified physicians, resulting in 860 total assessments. | Final discharge diagnosis of stroke | **Validity**
Physicians: Sensitivity
1 abnormality 66%, 95% CI 49-80%
2 abnormalities 26%, 95% CI 14-43%
3 abnormalities 11%, 95% CI 3-26%
Physicians: Specificity
1 abnormality 87%, 95% CI 80-92%
2 abnormalities 95%, 95% CI 90-98%
3 abnormalities 99%, 95% CI 95-100% Prehospital care workers: Sensitivity
1 abnormality 59%, 95% CI 51-67%
2 abnormalities 27%, 95% CI 21-35%
3 abnormalities 13%, 95% CI 8-20% Prehospital care workers: Specificity
1 abnormality 88%, 95% CI 86-91%
2 abnormalities 96%, 95% CI 94-97%
3 abnormalities 98%, 95% CI 96-99% The validity of this scale has been evaluated further, by both the scale developers and independent researchers.
Reliability
ICC for total scores among all prehospital workers was 0.92, 95% CI 0.89-0.93
ICC for total scores between prehospital workers and physicians was 0.92, 95% CI 0.89-0.93 |
| **Face Arm Speech Test** | 3 items derived from the CPSS: facial palsy, arm weakness, speech | 487 patients admitted by ambulance, primary | WHO criteria | **Validity**
Sensitivity: Diagnostic sensitivity of FAST associated |
<table>
<thead>
<tr>
<th>Assessment Tool Author</th>
<th>Items/Scoring</th>
<th>Sample</th>
<th>Reference Standard</th>
<th>Results (validity & reliability)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(FAST) Harbinson et al 2003</td>
<td>disturbance. Assessment of speech is not dependent on the repetition of a stock phrase, as per CPSS, but assessed during by EMS during normal conversation with the patient. Abnormality demonstrated on one or more items is indicative of suspected stroke.</td>
<td>care physicians and ED referrals with suspected stroke. Mean age was 72 years, 52% were female</td>
<td>Stroke/TIA prevalence: 356 (73.1%). FAST was completed by paramedics over a 6-month period</td>
<td>with paramedic use was estimated to be 79%. PPV (arrival by ambulance): 78%, 95% CI 72-84% The validity of this scale has been evaluated further, by independent researchers. Reliability Not assessed in this publication, but has been subsequently evaluated.</td>
</tr>
<tr>
<td>Los Angeles Prehospital Stroke Screen (LAPSS) Kidwell et al. 2000 (Prospective validation study)</td>
<td>6 items: 4 screening/history items (age>45 years, no history of seizures, symptom duration <24 hours, ambulation status at baseline not bedridden or wheelchair bound), blood glucose (between 60 and 400) level, a clinical assessment (of 3 items to identify obvious asymmetry: facial palsy, grip, arm strength). If the patient has positive criteria, a blood glucose level within the specified range and unilateral weakness on the clinical exam items, they are a positive screen for stroke.</td>
<td>206 patients (of 1,298 total runs) with neurological symptoms, who were noncomatose, with nontraumatic cause, who had a LAPSS screen conducted. Mean age was 67 years, 52% were male. Stroke/TIA prevalence: 36 (17.5%) LAPSS was completed by 18 paramedics over a 7-month period.</td>
<td>Hospitalized patients with final diagnosis of stroke</td>
<td>Validity Sensitivity: 91%, 95% CI 76-98% Specificity: 97%, 95% CI 93-99%) PPV: 86%, 95% CI 70-95% NPV: 98%, 95% CI 95-99% Accuracy: 96%, 95% CI 92-98% + LR: 31, 95% CI 16-147 - LR: 0.09, 95% CI 0-0.21 This validity of this scale has been evaluated further, by both the scale developers and independent researchers. Reliability Not assessed</td>
</tr>
<tr>
<td>Ontario Prehospital Stroke Screen (OPSS) Chenkin et al. 2009</td>
<td>At least one of the following symptoms must be present: unilateral leg/arm weakness or drift; slurred speech or muteness; unilateral facial droop), and the patient can be transported to arrive at a stroke centre within 3.5 hours of symptom onset.</td>
<td>325 patients transported to a stroke centre, who had been screened as positive by paramedics using the OPSS. Patients were identified through a National Stroke Registry. Mean age was 73.7 years, 47.4% were male.</td>
<td>Final discharge diagnosis</td>
<td>Validity Since all patients included in the sample, were screened as positive, sensitivity and specificity could not be calculated. PPV for acute stroke (1,2, or 3 positive signs): 89.5%, 95% CI 85.7-92.7% No additional validation studies have been conducted on this scale. Reliability</td>
</tr>
</tbody>
</table>
Assessment Tool

<table>
<thead>
<tr>
<th>Author</th>
<th>Items/Scoring</th>
<th>Sample</th>
<th>Reference Standard</th>
<th>Results (validity & reliability)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Melbourne Ambulance Stroke Screen (MASS)
Bray et al. 2005</td>
<td>Combination of items from CPSS and LAPSS.
The presence of any physical assessment item + a response of “yes” to all history items indicates a positive screen</td>
<td>Stroke prevalence: 187 (58%)
An unknown number of EMS workers conducted OPSS over a one-year period</td>
<td>Final discharge diagnosis</td>
<td>Not assessed</td>
</tr>
<tr>
<td>Medic Prehospital Assessment for Code Stroke (MedPACS)
Studneck et al. 2013</td>
<td>The scale was developed by combining the strongest elements of CPSS and LAPSS and included: eligibility criteria-no prior history of seizure; onset of symptoms ≤25 hours, blood glucose 60-400 mg/mL and a physical exam (facial droop, arm/leg weakness; speech difficulty; and gaze preference)
The presence of any physical assessment item + a response of “yes” to at least one eligibility criterion item indicates a positive screen</td>
<td>416 patients with suspected stroke, transported to one of 7 hospitals. Mean age was 66.8 years, 45.7% were male.
Stroke prevalence: 186 (44.7%)
EMS reports and stroke GWTG-S registries were reviewed over a 6-month period</td>
<td>Final discharge diagnosis</td>
<td>Validity
Sensitivity: 74.2%, 95% CI 67.2-80.2%
Specificity: 732.6%, 95% CI 26.7-39.1%
PPV: 47.1%, 95% CI 41.3-53.0%
NPV: 61.0, 95% CI 51.8-69.6%
+LR: 1.10, 95% CI 0.973-1.24
-LR: 0.791, 95% CI 0.582-1.07
The validity of the CPSS was also assessed (SN: 79%, SP: 24%)
No additional validation studies have been conducted on this scale.
Reliability
Not assessed</td>
</tr>
</tbody>
</table>
Table 2B: Additional Screening Tools: Glasgow Coma Scale

<table>
<thead>
<tr>
<th>Assessment Tool Author</th>
<th>Number and description of Items</th>
<th>Time to Administer</th>
<th>Reliability/validity</th>
<th>Interpretation of Scores</th>
<th>Sensitivity and Specificity</th>
<th>Training Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glasgow Coma Scale (GCS) Teasdale & Jennett 1974<sup>1</sup></td>
<td>15 items in 3 categories: motor response (6 items), verbal response (5 items), and eye opening (4 items). Points are awarded for the best response in each category. Categories are summed to provide a total score.</td>
<td>Approximately 1 minute.</td>
<td>Interobserver reliability: Scale authors reported low rates of disagreement, but noted variations in motor responses based on stimulus used<sup>2</sup>. Reported agreements ranged 0.48 (verbal) to 0.72 (eye opening)<sup>3</sup> and from 0.39 – 0.79.<sup>4</sup> Percentage agreements have been reported as 90% overall, and as ranging from 83.8% (eye opening, right) to 98.7% (best motor response – left).<sup>5</sup> In addition, similar rates of between observer agreement</td>
<td>GCS scores range from 3 – 15, where 3 represents total unresponsiveness and 15 represents alert and fully responsive. Scores may be divided into categories by severity: 13-15 = mild; 9-12 = moderate and ≤8 represents severe injury.<sup>21</sup></td>
<td>Not reported</td>
<td>Yes.</td>
</tr>
</tbody>
</table>
Construct Validity

In review of GCS, evidence supports association between extent of brain damage and depth of coma as assessed on GCS. GCS scores significantly associated with length of coma (p<0.0001).

Predictive Validity

GCS score is a significant predictor of death following stroke or traumatic brain injury (modified by age and mechanism of injury), though eye-opening may be less strongly associated than either the motor or verbal score components. GCS scores are also predictive of survival (AUC=0.89), though eye-opening may not add to predictive accuracy.

GCS scores have been demonstrated to be predictive of Glasgow Outcome scores at 6 months to 1 year post injury, Disability Rating Scale scores at discharge and at 6 months, FIM scores at discharge and at 6 months, and employment status at one-year.

<table>
<thead>
<tr>
<th>Assessment Tool</th>
<th>Number and description of items</th>
<th>Time to Administer</th>
<th>Reliability/validity</th>
<th>Interpretation of Scores</th>
<th>Sensitivity and Specificity</th>
<th>Training Required</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

have been reported in groups of experienced nurses (98.6% - 100%), newly graduated nurses (94.3%-96.2%) and student nurses (77.3% - 100%).

6 **Construct Validity:** In review of GCS, evidence supports association between extent of brain damage and depth of coma as assessed on GCS. GCS scores significantly associated with length of coma (p<0.0001).

7 **Predictive Validity:** GCS score is a significant predictor of death following stroke or traumatic brain injury (modified by age and mechanism of injury), though eye-opening may be less strongly associated than either the motor or verbal score components. GCS scores are also predictive of survival (AUC=0.89), though eye-opening may not add to predictive accuracy.

GCS scores have been demonstrated to be predictive of Glasgow Outcome scores at 6 months to 1 year post injury, Disability Rating Scale scores at discharge and at 6 months, FIM scores at discharge and at 6 months, and employment status at one-year.
Table 2C. Prehospital Stroke Severity Scales

<table>
<thead>
<tr>
<th>Assessment Tool</th>
<th>Items/Scoring</th>
<th>Sample</th>
<th>Reference Standard</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Field Assessment Stroke Triage for Emergency Destination (FAST-ED)</td>
<td>6-items, 5 based on NIHSS</td>
<td>741 consecutive patients enrolled in the STOPStroke study, who were admitted to 2 university-based hospitals with unilateral, complete occlusion of the M1 and M2 segments of the MCA or basilar artery, with onset of symptoms within 24 hours. Prevalence of LVO: 240 (33%)</td>
<td>CTA</td>
<td>A cut-point of ≥4 on FAST-ED had best performance
Sensitivity: 0.61
Specificity: 0.83
PPV: 0.72
NPV: 0.82
Accuracy: 0.79
AUC: 0.813
Performance of FAST-ED was also compared with NIHSS, RACE and CPSS scale</td>
</tr>
<tr>
<td>FAST-VAN</td>
<td>FAST + VAN (see description below)</td>
<td>172 consecutive stroke patients recruited from a single centre.</td>
<td>CTA</td>
<td>80 patients were positive for LVO, 58 were negative, based on CTA. PPV was 58%</td>
</tr>
<tr>
<td>Vision, Aphasia, and Neglect (VAN)</td>
<td>Patients are asked to raise both arms up and hold them up for 10 s. If the patient demonstrates any level of drift, weakness or paralysis, the assessment continues. Otherwise, patient is VAN -ve and screen ends. Items Visual disturbances: field cut, double vision, new-onset blindness (present/absent) Aphasia: Expressive, receptive, mixed (present/absent) Neglect: Forced gaze, unable to</td>
<td>62 acute stroke codes at a single facility</td>
<td>CTA</td>
<td>Performance of VAN was also compared with NIHSS ≥6
For VAN +ve patients
Sensitivity: 1.00
Specificity: 0.90
PPV: 0.74
NPV: 1.00
Accuracy: 0.92
NIHSS≥6
Sensitivity: 1.00
Specificity: 0.79
PPV: 0.58
NPV: 1.00
Accuracy: 0.84</td>
</tr>
</tbody>
</table>
Prehospital and Stroke Screening Tool

<table>
<thead>
<tr>
<th>Assessment Tool Author</th>
<th>Items/Scoring</th>
<th>Sample</th>
<th>Reference Standard</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prehospital Acute Stroke Severity Scale (PASS)</td>
<td>feel both sides at same time or doesn't recognize arm, ignoring one side (present/absent)</td>
<td>3,127 patients included in the Danish Stroke Registry (2010-2015) who were treated with t-PA. 2/3 of sample was used for scale development and 1/3 for validation</td>
<td>CTA/MRA</td>
<td>A cut-point of ≥2 on the PASS had the best predictive value: Using the Derivation cohort Sensitivity 0.66, 95% CI 0.62-0.66 Specificity: 0.83, 95% CI 0.81-0.85 AUC: 0.74, 95% CI 0.72-0.76 OR=9.22, 95% CI 7.5-11.40 PPV/NPV: 0.68/0.81 +LR/-LR: 3.84/0.42 The values were similar when using the validation cohort</td>
</tr>
<tr>
<td>Hastrup et al. 2016</td>
<td>Scoring: None If weakness present + ≥1 positive finding = VAN +ve</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 NIHSS items:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. Incorrect month and/or age? (Level of consciousness (NIHSS item >0) 1 point</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Gaze palsy and/or deviation (NIHSS item gaze>0) 1 point</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Arm weakness (NIHSS item arm weakness >0) 1 point</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total possible score: 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>The Los Angeles Motor Scale (LAMS)</td>
<td>feel both sides at same time ordoesn't recognize arm, ignoring one side (present/absent)</td>
<td>119 patients included in a clinical trials registry at a stroke centre from 1996-2003, and patients included in the Get with the Guidelines Registry in 2005. Patients were included if they were last known well within 12 hours of presentation to the ED and had a final diagnosis of ischemic stroke in the anterior circulation</td>
<td>MRA/CTA, or catheter angiography</td>
<td>A cut point of ≥4 had the best predictive value for detecting LVO Sensitivity: 81% Specificity: 89% Accuracy: 85% +LR: 7.36 -LR: 0.21 The values were similar when using the validation cohort</td>
</tr>
<tr>
<td>Nazliel et al. 2008</td>
<td>Scoring: None If weakness present + ≥1 positive finding = VAN +ve</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 items:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. Facial droop (absent=0, present=1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Arm drift (absent=0, drifts down=1, falls rapidly=2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Grip strength (normal=0, weak=1, no grip=2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total possible score 5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cincinnati Prehospital Stroke Severity Scale</td>
<td>feel both sides at same time or doesn't recognize arm, ignoring one side (present/absent)</td>
<td>Derivation cohort-624 patients with mild to severe stroke from 2 NINDS t-PA trials.</td>
<td>CTA</td>
<td>A cut point of ≥2 had the best predictive value for severe stroke</td>
</tr>
<tr>
<td></td>
<td>Scoring: None If weakness present + ≥1 positive finding = VAN +ve</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 NIHSS items:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. Conjugate gaze deviation (≥1 on NIHSS item for gaze) 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Assessment Tool

<table>
<thead>
<tr>
<th>Author</th>
<th>Items/Scoring</th>
<th>Sample</th>
<th>Reference Standard</th>
<th>Results</th>
</tr>
</thead>
</table>
| **(CPSSS)** | 2. Incorrectly answers to at least 1 of 2 LOC questions (NIHSS age or current month) and does not follow at least 1 of 2 commands (close eyes, open and close hand) ≥1 NIHSS items LOC 1b and 1c. 1 point 3. Cannot hold arm (left, right or both) up for 10 seconds (≥2 NIHSS motor arm). 1 point | Validation cohort-650 patients from the IMS-III trial | Prevalence of LVO: 34% (validation cohort) | Using the derivation cohort
Sensitivity: 89%
Specificity: 73%
+ LR/-LR: 3.30/0.15
Using the validation cohort:
Sensitivity: 92%
Specificity: 51%
+ LR/-LR: 1.89/0.1 |
| **Katz et al. 2015** | Points 1. Incorrectly answers to at least 1 of 2 LOC questions (NIHSS age or current month) and does not follow at least 1 of 2 commands (close eyes, open and close hand) ≥1 NIHSS items LOC 1b and 1c. 1 point 3. Cannot hold arm (left, right or both) up for 10 seconds (≥2 NIHSS motor arm). 1 point | Total possible score 4 | **Pérez de la Ossa et al. 2014** | **Rapid Arterial oCclusion Evaluation Scale (RACE)** 5 NIHSS items: 1. Facial palsy (absent=0, mild=1, mod/severe=2) 2. Arm motor function (normal/mild=0, moderate=1, severe=2) 3. Leg motor function (normal/mild=0, moderate=1, severe=2) 4. Head and gaze deviation (absent=0, present=1) 5. Aphasia (R hemiparesis: performs both tasks correctly=0, performs 1 task correctly=1, performs neither tasks=2); Agnosia (Left hemiparesis: patient recognizes arm/impairment=0, does not recognize arm or impairment=1, does not recognize arm and impairment=2) | Transcranial Doppler, CT or MRA
Derivation cohort-654 patients with acute stroke or stroke mimic for whom a stroke code had been activated by EMS or a community hospital.
Validation cohort-357 patients transferred by EMS to a stroke centre | Prevalence of LVO: 178 patients (27%) had a LVO in derivation cohort vs. 76 (21.3%) in the validation cohort.
In the derivation cohort, there was a strong correlation between RACE and NIHSS ($r=0.76$, $p<0.01$)
In the validation cohort, a cut point of ≥5 had the best predictive value for detecting LVO
Sensitivity: 85%
Specificity: 68%
PPV: 42%
NPV: 94%
The AUC for the RACE scale was 0.82, 95% CI 0.77-0.87 for the detection of LVO |
| **3-Item Stroke Scale (3ISS)** | 3 items: Disturbance of consciousness (no=0) 180 patients presenting to a stroke unit in 2002 with symptoms of stroke | MRI/MRA/CT | A cut point of ≥4 had the best predictive value for detecting MCA occlusions
Sensitivity: 67% |
Assessment Tool

<table>
<thead>
<tr>
<th>Author</th>
<th>Items/Scoring</th>
<th>Sample</th>
<th>Results</th>
</tr>
</thead>
</table>
| Singer et al. 2005 | 0, mild = 1, severe = 2) Gaze and head deviation (absent = 0, incomplete gaze/head deviation = 1, forced gaze/head deviation = 2) Hemiparesis (absent = 0, moderate = 1, severe = 2) | within ≤6 hours (28 patients had ICH). Prevalence of LVO: 27 (15%) | Specificity: 92%
PPV: 74%
NPV: 89%
Accuracy: 86%
Inter-rater reliability: Intraclass correlation co-efficient was 0.947; K for individual items were 0.77, 0.77 and 0.84 |

Note:
PPV: Positive Predictive Value; NPV: Negative Predictive Value; LR Likelihood Ratio; AUC Area under curve

Table A References

Table 2B References

Table 2C References

Useful links:

2) http://www.strokeassociation.org/idc/groups/stroke-public/@wcm/@private/@hcm/@gwtg/documents/downloadable/ucm_428607.pdf This is an American Stroke Association link to a handout that provides complete instructions for non-medical individuals to administer the CPSS to someone in whom a stroke is suspected.

3) http://www.acep.org/uploadedFiles/ACEP/Practice_Resources/disaster_and_EMS/EMS_week/ems_week_materials/08factsheets.pdf The second page on this link has "cards" for the CPSS and the LAPSS.

5) There is a more detailed review of the GCS available at www.abiebr.com. There is also a review of the GCS posted at www.strokengine.ca.