Taille du texte :    +   -

Amplitude du mouvement et spasticité de l’épaule, du bras et de la main

2016 MISE À JOUR
février 2016

La 5e édition des Recommandations canadiennes pour les pratiques optimales de soins de l’AVC sur Réadaptation post-AVC (2015) est publiée dans l’International Journal of Stroke et est accessible en ligne gratuitement. Afin d’accéder aux recommandations spécifiques pour : Amplitude du mouvement et spasticité de l’épaule, du bras et de la main, et tous les autres chapitres des recommandations sur Réadaptation post-AVC, veuillez cliquer sur ce lien, qui vous dirigera vers les recommandations en ligne dans l’Internal Journal of Stroke : http://journals.sagepub.com/doi/pdf/10.1177/1747493016643553

Pour la version française de ces recommandations, veuillez consulter l’annexe en cliquant sur le lien suivant : http://wso.sagepub.com/content/suppl/2016/04/18/1747493016643553.DC1/Stroke_Rehabilitation_2015_IJS_Manuscript_FINAL_FRENCH.pdf

Tous les autres renseignements connexes, y compris les indicateurs de rendement, les ressources de mise en l’œuvre, les résumés des données probantes et les références, sont accessibles au www.pratiquesoptimales.ca, et non pas sur le site de l’International Journal of Stroke. Veuillez cliquer sur les sections appropriées de notre site Web pour le contenu additionnel.

Justification

La spasticité est une augmentation des réflexes toniques à l’étirement d’un muscle (tonus musculaire) qui dépend de la vélocité de l’étirement et est accompagnée de réactions exagérées des tendons. Elle peut être douloureuse et nuire au rétablissement des fonctions et aux efforts de réadaptation. Si elle n’est pas prise en charge de la manière appropriée, le survivant d’un AVC peut éprouver une perte de l’amplitude des mouvements aux articulations du bras affecté, ce qui peut causer des contractures.

Exigences pour le système

L’évaluation et la prise en charge appropriées et en temps opportun de l’amplitude du mouvement de l’épaule, du bras et de la main ainsi que de la spasticité exigent les éléments suivants :

  • La disponibilité de soins de l’AVC organisés ainsi que l’accès à ceux-ci pendant la période de réadaptation post-AVC, notamment des unités de réadaptation post-AVC dotées d’un nombre nécessaire de membres du personnel et d’une équipe interprofessionnelle ayant reçu la formation appropriée.
  • L’accès en temps opportun à des services de réadaptation post-AVC spécialisés et interprofessionnels offrant des évaluations et des traitements du type et de l’intensité indiqués.
  • La disponibilité au sein de l’équipe interdisciplinaire des compétences nécessaires pour prévenir ou améliorer la spasticité post-AVC et pour trouver les moyens de remédier aux complications et aux limitations fonctionnelles qui y sont associées.
  • L’optimisation des stratégies de prévention et de prise en charge de la spasticité tant initialement après l’AVC qu’au moment des évaluations de suivi.
  • Le financement nécessaire pour les injections de chimiodénervation et les services de réadaptation post-injection associés, le cas échéant.
  • La disponibilité à grande échelle de soins de réadaptation de longue durée dans les établissements de soins infirmiers et de soins de longue durée ainsi que dans les programmes ambulatoires et communautaires.

Indicateurs de rendement

  1. Modification (amélioration) du score de l’état fonctionnel mesuré à l’aide d’une échelle d’évaluation uniformisée à partir de l’admission dans un programme de réadaptation pour patients hospitalisés, jusqu’au congé.
  2. Modification du score de l’état fonctionnel de l’épaule, du bras et de la main mesuré à l’aide d’une échelle d’évaluation uniformisée (échelle de douleur Chedoke-McMaster ou échelle d’Ashworth modifiée) à partir de l’admission dans un programme de réadaptation pour patients hospitalisés, jusqu’au congé.
  3. Délai médian entre l’admission en raison d’un AVC à un hôpital de soins actifs et l’évaluation du potentiel de réadaptation effectuée par un spécialiste du domaine des soins de réadaptation.
  4. Durée médiane du séjour dans une unité de réadaptation post-AVC pendant la réadaptation en milieu hospitalier.

Remarques relatives aux indicateurs de rendement

  • Un processus d’entrée des données devra être établi afin de recueillir les scores obtenus selon des outils de mesure des résultats de santé, tels que l’échelle Chedoke-McMaster.
  • Les résultats de l’instrument MIF se trouvent dans la banque de données du SNIR de l’ICIS pour ce qui est des organismes qui y contribuent.

Ressources pour la mise en œuvre et outils d’application des connaissances

Renseignements destinés aux fournisseurs de soins de santé

Renseignements destinés au patient

Résumé des données probantes

Lien vers les tableaux de données probantes et la liste des références

Spasticity, defined as a velocity dependent increase of tonic stretch reflexes (muscle tone) with exaggerated tendon jerks can be painful, interfere with functional recovery and hinder rehabilitation efforts. If not managed appropriately, stroke survivors may experience a loss of range of motion at involved joints of the arms, which can result in contracture. Although it is a common in clinical practice to use range-of-motion or stretching exercises and splints to prevent or treat spasticity or contracture following stroke, there is a lack of evidence supporting their benefit.

Turton & Britton (2005) randomized 13 participants with no hand function, admitted to a stroke rehabilitation unit, within 4 weeks of stroke to a program of twice daily stretches for wrist and finger flexors and shoulder adductors and internal rotators, for up to 12 weeks post stroke. By the end of follow-up, patients in both groups had lost an average of 30 degrees of wrist extension and shoulder external rotation ROM of the affected side, but the difference between groups was not significant. Compliance with treatment was poor. Horsley et al. (2007) recruited 40 patients admitted to a rehabilitation service (19 with stroke). All patients received routine upper-limb retraining five days a week. In addition, the experimental group (n=20) received 30 minutes daily stretch of the wrist and finger flexors five days a week for four weeks. There was no difference in the development of contracture, the primary outcome, five weeks after treatment. There were also no differences in pain at rest measured on a 10-cm visual analogue scale, or upper-limb activity measured using the Motor Assessment Scale.

Splints have been widely-used in clinical practice with the aim of the prevention of contractures and reducing spasticity; however, evidence of their effectiveness is lacking. The results from 3 small RCTs suggest that splinting is not effective (Harvey et al. 2006, Lanin et al. 2007, and Basaran et al. 2012). Most recently, Basaran et al. (2012) randomized 39 participants to participate in a 5 week, home-based exercise program in which patients were advised to stretch wrist and finger flexors for 10 repetitions and to try reaching and grasping an object for 10 repetitions 3x/day, in addition to conventional therapy. Patients in the 2 experimental groups wore either a volar or dorsal splint for up to 10 hours overnight throughout the study period, while patients in the control group wore no splint. At the end of the study period, there were no significant differences among groups in terms of reductions in spasticity or wrist passive range of motion. Furthermore, Doucet et al. (2013) evaluated 6 participants, on average, 67.92 months post stroke using a pre-post design. Custom-fitted dynamic progressive wrist extension orthotic was worn for 4 hours daily, 4 times a week for 12 weeks. Modified Ashworth Scale (MAS) scores of the wrist were assessed at baseline and 12 weeks. Half of the sample demonstrated improvement in MAS scores. Andringa et al. (2013) conducted a pre-post study among 6 participants, on average 64 months (range: 22-110) post stroke. Custom-made dynamic orthotics was worn 8 hours daily, for 6 months. MAS scores of the elbow, wrist and fingers were assessed at baseline, 3 months and 6 months. There were no significant differences within or among groups on MAS.

While it is well-established that treatment with Botulinum toxin–type A (BTX-A) reduces focal spasticity in the finger, wrist and elbow, it remains uncertain whether there is also improvement in upper-limb function. In 2 recent, large placebo-controlled RCTs, one which recruited participants within the first month (Shaw et al. 2012) and the other an average of 6 years following stroke (McCrory et al. 2009), significant reductions in spasticity, assessed using the Modified Ashworth Scale scores were reported in both studies. Shaw et al. (2012) reported there was no significant difference in the percentage of patients who had achieved a successful outcome (defined by 3 different levels of improvement on the Action Research Arm Test, depending on baseline arm function) at one month following treatment: 25% of patients in the treatment group compared with 19.5% of patients in the control group (p=0.232). However, significant differences in favor of the intervention group were seen in muscle tone at 1 month; upper limb strength at 3 months; basic arm functional tasks (hand hygiene, facilitation of dressing) at 1, 3, and 12 months, and pain at 12 months. McCrory et al. (2009) reported there were no significant between group differences in Assessment of Quality of Life scale change scores, pain, mood, disability or carer burden at 20 weeks. Coban et al. (2014) reported results from a pre-post study of 17 patients with upper limb spasticity at least 1 year post-stroke. Two preparations of Botox and Dysport were used. Injections were administered in one distal part of the upper limb (the upper limb spasticity group, 15 patients) or lower limb (the lower limb spasticity group, 12 patients). MAS of elbow flexors, forearm pronators, wrist flexors and finger flexors were assessed after the first, second, and fifth injection. Only forearm pronators showed a statistically significant change in MAS scores between the first versus second injection (p=0.021) and first versus fifth injection (p=0.021). An RCT evaluating 18 participants with upper limb spasticity (MAS=1-2) who were 4-6 months post stroke was conducted (Hesse et al. 2012). Participants were randomized into two groups: 1) 150 U BTX-A injected into the deep and superficial finger (100 U) and wrist flexors (50 U), or 2) no injection. MAS of fingers were assessed at baseline, 4 weeks and 6 months. Individuals in the treatment group experienced significantly less finger flexor stiffness at 4 weeks (p<0.001) and 6 months (p=0.025) (Hesse et al. 2012).

Santamoto et al. (2013) conducted a pre-post of 25 patients with upper limb spasticity (AS ≥2) who were ≥ 6 months post stroke. Participants received one set of injections of BTX-A, in their hypertonic upper and lower limb; maximum total dosage in the upper limbs was 840 U (range 750-840 U). Disability Assessment Scale (DAS) was assessed 30- and 90-days post injections. Mean DAS scores decreased at 30 and 90 days after treatment (p<0.05). However, the rate of response was higher for investigators than patients; 40% of investigators and 28% of patients rated their clinical picture as “marked improvement.” Takekawa et al. (2013) studied participants with upper limb spasticity 64.8 months post stroke. BTX-A was injected into the elbow flexors, wrist flexors, forearm pronators or finger flexors with a total dosage less than 240 U. After the injection, participants participated in one-on-one home-based functional training for 15 minutes with an occupational therapist. MAS of elbow flexors, wrist flexors, forearm pronators and finger flexors were assessed at baseline, and at 1-, 3- and 6-month follow-up. A significant reduction in MAS scores were noted in all muscles examined, at 1-, 3-, and 6-month follow-up compared to baseline (p<0.001 for all).

In cases where spasticity is generalized, and it would be impractical, or contrary to patients’ wishes to inject multiple muscle groups with BTX-A, the use of oral agents may be considered as an alternative treatment. Traditional pharmacotherapies for spasticity include centrally acting depressants (baclofen and tizanidine) and muscle relaxants; (dantrolene) however; these treatments are only partially effective in treating spasticity and have the negative side effects of weakness and sedation. Treatment with oral baclofen has not been studied in the stroke population and is used more frequently in patients recovering from spinal cord injury. Tizanidine has been well-studied in other conditions including multiple sclerosis and acquired brain injury, and has a better side effect profile than other oral agents. There is only a single open-label trial of the use of tizanidine post stroke (Gelber et al. 2001). Following 16 weeks of treatment in which 47 patients received a maximum daily dose of 36 mg (mean 20 mg), there was a decrease in mean combined total modified Ashworth Scale scores (9.3 vs. 6.5, p=0.038). There were also significant improvements in pain, quality of life, and physician assessment of disability.